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Abstract

Background: Pedestrian and bicyclist injury is an important public health issue. The retail environment, particularly
the presence of alcohol outlets, may contribute the the risk of pedestrian or bicyclist injury, but this association is
poorly understood.

Methods: This study quantifies the spatial risk of alcohol-related pedestrian injury in New York City at the census
tract level over a recent 10-year period using a Bayesian hierarchical spatial regression model with Integrated Nested
Laplace approximations. The analysis measures local risk, and estimates the association between the presence
of alcohol outlets in a census tract and alcohol-involved pedestrian/bicyclist injury after controlling for social, economic
and traffic-related variables.

Results: Holding all other covariates to zero and adjusting for both random and spatial variation, the presence of
at least one alcohol outlet in a census tract increased the risk of a pedestrian or bicyclist being struck by a car by
47 % (IDR = 1.47, 95 % Credible Interval (CrI) 1.13, 1.91).

Conclusions: The presence of one or more alcohol outlets in a census tract in an urban environment increases
the risk of bicyclist/pedestrian injury in important and meaningful ways. Identifying areas of increased risk due
to alcohol allows the targeting of interventions to prevent and control alcohol-related pedestrian and bicyclist
injuries.

Background
After many years of declines, pedestrian and bicyclist in-
juries have been increasing across the United States
(Patek and Thoma 2013; NHTSA 2011). Active trans-
portation, including walking, accounts for 2.8 % of all
commutes and 8.6 % of all trips in the US, but pedes-
trians represented 11.3 % (4,645) of the 41,059 total US
traffic fatalities in 2007 (FHWA 2010; NHTSA 2007).
Pedestrian injury and fatality is of particular import-

ance in dense urban environments. In 2007 73 % of ped-
estrian crashes in the US occurred in urban areas
(NHTSA 2007). In New York City, pedestrian deaths
have outnumbered motor-vehicle occupant deaths since
1910, and between 1997 and 2006, New York City

accounted for the largest proportion of pedestrian fatal-
ities in the United States (Chang 2014). Recently, the
office of the mayor has instituted a “Vision Zero” traffic
plan to address the “epidemic of traffic fatalities and in-
juries” in New York City (NYC 2015). The initiative is
based on pioneering efforts in Sweden to bring traffic fa-
talities down to zero (Sweden 2015), and focuses in large
part on pedestrians and bicyclists. The New York City
plan involves educational, enforcement, and engineering
interventions, as well as research, surveillance and data
analysis “to help target traffic safety interventions” and
evaluate the effectiveness of the program (NYC 2015).
Retail environments, particularly alcohol outlets, may

contribute to the risk pedestrians face from traffic
(Treno et al. 2007; LaScala et al. 2001; Campbell et al.
2009; Kuhlmann et al. 2009). In the United States, nearly
half of car crashes in which a pedestrian is killed involve
an intoxicated pedestrian or driver (Chang 2008). In
New York City, 15 % of pedestrians and 10 % of bicyclists
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injured by motor vehicles had used alcohol as measured
by emergency deparment blood alcohol testing (Dultz et
al. 2013). Despite these individual-level associations, stud-
ies have found that proximity to bars is unrelated to alco-
hol consumption (Bernstein et al. 2007) and negatively
associated with drinking and driving (Gruenewald et al.
2002). In this latter study, while bar density was not asso-
ciated with drinking and driving, restaurant density was. A
follow up study by the same group using similar methods
later found bar densities to be positively associated with
drinking and driving (Ponicki et al. 2013). Inconsistency in
the observed relationship between alcohol outlets and
both proximal and distal consequences may derive partially
from differences in modeling proximity to alcohol outlets
or the pedestrian population at risk. Bayesian hierarchical
spatial regression models offer a natural modeling strategy
to explore spatio-temporal differences in risk, and have
been explored extensively to relate presence of alcohol out-
lets to prevalence of violent crime (Toomey et al. 2012; Yu
2008; Sparks 2011). To our knowledge, they have not pre-
viously been applied to investigate the relationship between
alcohol outlets and pedestrian/bicyclist injury risk.
This analysis adds to and is part of a series of recent

public health analyses focusing on built environment
and its role in pedestrian injury in the context of Vison
Zero initiatiatives in New York City. Among these stud-
ies are reports that “traditional engineering measures, in
particular, signal-related ones, remain effective, when in-
stalled at appropriate locations” (Chen et al. 2013), the
utility of remote imagery to characterise pedestrian in-
jury risk (Mooney et al. 2016), and a series of articles
documenting the safety benefits, and cost effectivness of
Safe Routes to School environmental interventions in
preventing pediatric pedestrian injury (DiMaggio and Li
2013; Muennig et al. 2014, DiMaggio et al. 2014).
This study quantifies the spatiotemporal risk of

alcohol-related pedestrian injury in New York City at
the census tract level over a recent 10-year period using
a Bayesian hierarchical spatial regression model (Besag
et al. 1991) with Integrated Nested Laplace approxima-
tions (Blangiardo et al. 2013; Rue et al. 2013). The study
measures local risk, and estimates the association be-
tween the presence of alcohol outlets in a census tract
and pedestrian/bicyclist injury after controlling for so-
cial, economic and traffic-related variables. The primary
goals of the study are to quantify the role of alcohol out-
lets, which includes grocery, catering, and eating estab-
lishments in addition to bars, with pedestrian/bicyclist
injury in a dense urban environment, and to establish an
approach to evaluations of the built environment at the
local level for alcohol-related pedestrian injury. Second-
ary goals are to quantify and interpret the association of
ecologic-level variables that may contribute to pedestrian
and bicyclist injury risk at the community level.

Methods
Crash data for motor vehicle injuries to pedestrians and
bicyclists were obtained from the New York City Depart-
ment of Transportation. These were based on police in-
vestigations for all motor-vehicle crashes in New York
City for the years 2001 to 2010 involving personal injury
or property damage in excess of $1,000. Records were
restricted to those with for which alcohol was listed as a
primary contributing factor. These records do not indi-
cate whether it was the driver or the pedestrian or bicyc-
list that was impaired by alcohol. Crash latitude and
longitude coordinates were assigned to census tracts
using the R maptools package (Lewin-Koh and Bivand
2012). Census tract populations were based on United
States 2000 and 2010 decennial census enumerations
(US Census Bureau 2010). Census tracts were restricted
to 1,929 census tracts that were present in both 2000
and 2010, creating a closed cohort of census tracts.
Population estimates were linearly interpolated over
inter-census years. Census tract housing and economic
data were based on 2010 US Census estimates. Alcohol
outlet data were derived from street addresses for all
currently active liquor licenses in New York City
(NYSLA 2015a). There are 21 classes of liquor licenses
covering such enteties as delicatessens, grocery stores,
catering and eating establishments as well as bars
(NYSLA 2015b). Outlet addresses were geocoded and
each outlet was assigned to a census tract (Texas A and M
University 2015). These data were merged with the pedes-
trian/bicyclist crash data files based on census tract.
A social fragmentation index (Congdon 2013; Pabayo

et al. 2014) was created using 4 variables extracted from
2010 US census variables: the proportion of total hous-
ing units in a census tract that were not owner occupied,
the proportion of vacant housing units, the proportion
of individuals living alone and the proportion of housing
units into which an occupant recently moved. A “recent”
move in the Census data was defined as anytime after
the prior census enumeration, i.e. 2000. The four com-
ponent social fragmentation index variables were stan-
dardized and summed with equal weights, resulting in a
normally distributed index with mean zero and 95 %
quantiles between −2.5 and 2.2.
An economic measure was based on the census tract

median household income for the past 12 months (in
units of 10,000 2012 inflation-adjusted dollars). Census
tract traffic-related variables were obtained from the
New York City Department of Health and Mental
Hygeine, and consisted of traffic density (vehicle kilome-
ters traveled per day per square kilometer) in standard-
ized units, and average speed in increments of 10 miles
per hour (Ross et al. 2013).
A census tract map file for New York City was obtained

from the US Census and was matched to aggregated
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census tract counts of pedestrian/bicyclist injuries and
presence or absence of alcohol outlets. Twenty-one
census tracts with zero population representing large
parks, beaches, cemeteries and train yards were ex-
cluded from analysis. Three census tracts representing
highly-trafficked tourist areas with small underlying
populations (Grand Central Station, Penn Station, and
Times Square) were adjusted based on hotel capacity,
adding 16,000 transient residents to each area (Karmin
2013). A contiguous neighbor adjacency matrix graph
was created for use with the conditional autoregression
term in the model using the poly2nb function in the
spdep R package (Bivand 2013).
Counts of pedestrian and bicyclist injuries in New

York City census tracts were spatially modeled (Lawson
et al. 2000; Lawson 2013; Banerjee et al. 2004) as:

yie Pois λi ¼ eiθið Þ

log θið Þ ¼ βxi þ υi þ ηi

υ e nl 0; τυð Þ

η e nl ηδ; τη=ηδ

� �

where,

(1) the yi counts in area i, are independently identically
Poisson distributed and have an expectation in area i
of ei, the expected count, times θi, the risk for area i.

(2) a logarithmic transformation (log(θi)) allows a linear,
additive model of regression terms (βxi), along with

(3) a spatially unstructured random effects component
(υi) that is i.i.d normally distributed with mean zero
(~ nl(0,τυ)), and

(4) a conditional autoregressive spatially structured
component η∼nl ηδ; τη=nδ

� �� �
in which a

“neighborhood” consisting of spatially adjacent
shapes is characterized by the normally
distributed mean of the spatially structured
random effect terms for the spatial shapes that
make up the neighborhood �ηδ

� �
, and the standard

deviation of that mean divided by the number of
spatial shapes in the neighborhood (τη/nδ). This
spatially structured conditional autoregression
component is also sometimes described as a
Gaussian process λ NI(W, τλ) where W represents
the matrix of neighbors that defines the neighborhood
structure, and the conditional distribution of each λi,
given all the other λi is normal with μ = the average λ
of its neighbors and a precision (τλ).

The baseline convolution model that consisted solely
of an intercept term with unstructured and spatially
structured random effect terms was extended to include
covariates for the presence or absence of alcohol outlets
in a census tract, social fragmentation, median house-
hold income, traffic density and average speed.
The final linear model consisted of an intercept (β0);

and indicator variable for the presence or absence of al-
cohol outlets in a census tract (β1), a vector of census-
level explanatory variables (βxi) for social fragmentation
(Congdon index), economics (in $10,000 increments of
median household income), average speed (in 10-mile
per hour increments), and traffic density (in standard-
ized units); a spatially unstructured random effect term
(υi); and a spatially structured conditional autoregression
term (ηi). The log of the yearly census-tract population
was included as an offset variable.
In this model, the intercept is interpreted as the average

city-wide per-population risk on the log scale adjusted for
the presence of alcohol outlets, covariates, random effects
and spatial terms. The exponentiated coefficient for the
alcohol outlet term is interpreted as an incidence density
ratio for the association of pedestrian/bicyclist injuries for
census tracts with alcohol outlets vs. those without, con-
trolling for the additional census-tract level explanatory
covariates. The spatially unstructured random effect term
captures normally-distributed or Gaussian random vari-
ation around the mean or intercept. The spatially-
structured conditional autoregression term accounts for
local geographic influence.
Spatial risk, controlling for or holding the covariates

constant, was calculated as ζi = υi + ηi, and is interpreted
as the residual spatial risk for each area (compared to all
of New York City) after presence of alcohol outlets, so-
cial fragmentation, economics, average speed, and traffic
density are taken into account. The probability of spatial
risk greater than 3 (Pr eiξ >3) was calculated. These so-
called exceedance probabilities (Clayton and Bernardi-
nelli 1992) are the posterior probabilities for an area’s
spatial risk estimate exceeding some pre-set value. This
can be extended (Richardson et al. 2004) to decision
rules “for classifying whether (an area) has an increased
risk based on how much of the posterior distribution of
the relative risk parameter … exceeds a reference
threshold” (Best et al. 2005). They are calculated as the
proportion of simulations for which the linear combin-
ation of effects (ζ) exceeds the target value. Lastly, the
proportion of spatially explained variance was calcu-
lated as the proportion of total spatial heterogeneity
accounted for by the spatially structured conditional
autoregression variance.
Spatial modeling was conducted using integrated nested

Laplace approximations (INLA) with the R INLA package
(Rue et al. 2013; Blangiardo et al. 2013). The study
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protocol was approved as exempt by the New York
University School of Medicine Institutional Review Board.

Results
Of the 168,060 pedestrian and bicyclist injury records
for New York City between 2001 and 2010, 93,783
(55.8 %) had a valid entry for a primary apparent con-
tributing factor. 2,170 of these records listed alcohol as
the primary apparent contributing factor. Of the 1,908
New York City census tracts included in the study 198
(10.4 %) had at least one actively licensed alcohol outlet.
The population-based alcohol-related pedestrian/bicyc-
list injury rate varied by borough. The highest rate was
in Manhattan was 33.9 injuries per 100,000 population,
followed by Brooklyn with 27.6 injuries per 100,000 popu-
lation. The boroughs of Queens and the Bronx had similar
rates, with 14.6 and 14.9 injuries per 100,000 population
respectively. The lowest rate was in Staten Island, with 7.0
injuries per 100,000 population. There was an initial drop
in the population-based rate of alcohol-related pedestrian
injuries in New York City in 2002, followed by a relatively
stable rate of approximately 2.8 alcohol-related injuries
per 100,000 persons each year (Fig. 1).
The results for the fixed effects of the presence of al-

cohol outlets and covariates for the the spatial model are
presented in Table 1. Holding all other covariates to zero

and adjusting for both random and spatial variation, the
presence of a at least one alcohol outlet in a census tract
increased the risk of a pedestrian or bicyclist being struck
by a car by 47 % (IDR = 1.47, 95 % Credible Interval (CrI)
1.13, 1.91). Every one unit increase in the social fragmen-
tation index was associated with a 25 % increase in pedes-
trian injury risk (95 % CrI 1.17, 1.35). Similarly, for every
one standardized unit increase in traffic density, there was
a 28 % increase in pedestrian injury risk (95 % CrI 1.16,
1.40). For every 10 mile per hour increase in average traf-
fic speed in a census tract, there was a 31 % decrease in
pedestrian injury risk (95 % CrI 0.55, 0.87). Each $10,000
increment in median household income within a census
tract was associated with a 1 % decrease in census-tract
level pedestrian injury risk (95 % CrI 0.98, 0.99).

Fig. 1 Yearly Alcohol-Related Pedestrian and Bicyclist Injury Rate per 100,000 Population With Overlying Loess Smoothing Line. New York
City, 2001–2010

Table 1 Incidence Density Ratios (IDR) for risk of pedestrian
bicyclist injury in relation to built environment characteristics,
New York City, 2001–2010

IDR 95 % credible interval

At least one alcohol outlet 1.47 (1.13, 1.91)

Social fragmentation 1.25 (1.17, 1.35)

Median household income (per $10,000) 0.99 (0.98, 0.99)

Traffic density, z-score 1.28 (1.16, 1.40)

Average vehicle speed, per 10 MPH increment 0.69 (0.55, 0.87)
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The spatially unstructured heterogeneity random effect
term was normally distributed and spatially random.
The spatially structured conditional autoregression term
demonstrated areas of spatial patterning and similarity
among census tracts. The proportion of the total spatial
heterogeneity explained by the spatially structured con-
ditional autoregression term was 73.2 %. The spatial risk
term at the census tract level identified areas at in-
creased risk of alcohol-related pedestrian/bicyclist injury
throughout the 10-year period (Fig. 2). Posterior prob-
abilities for the 48 census tracts with a spatial risk esti-
mate of alcohol-related injury exceeding 3 are presented
in Fig. 3. In this figure, for each census tract highlighted
in dark blue, the probability that the risk that a pedes-
trian or bicyclist injury is alcohol-associated is greater
than 3 approaches near certainty. In Fig. 4, a single
census tract from lower Manhattan is selected where
the probability is greater than 85 % that the risk of
an injury is alcohol-related injury is at least 3. A sat-
ellite image for this tract obtained from Google Maps
is then presented, illustrating the general physical lay-
out of the tract. Figure 5 then presents the a detailed
Google Street View image of one of the blocks in the
census tract, illustrating the kind of detail available to
researchers and persons conducting public health

evaluations of the built environment for features re-
lated to pedestrian injury.

Discussion and conclusions
In this study, we found that presence of alcohol outlets
was meaningfully associated with the risk of alcohol-
related pedestrian and bicyclist injury in New York City
from 2001 to 2010. Alcohol consumption, whether on
the part of a motor vehicle driver or a vulnerable road
user, increases the likelihood of a crash, the severity of
injuries incurred in a crash, and the odds of death due
to a crash (Peden and Sminkey 2004).
Drinking places not only the driver and vehicle passen-

gers at risk for serious bodily harm but also pedestrians
and cyclists who share the road. Although vehicle safety
upgrades (e.g. air bags, structural integrity) and educa-
tional and legislative campaigns (e.g. seatbelt use, child
seats) have made driving safer and reduced the number
of deaths of motor vehicle occupants, studies from both
the US (MMWR 2001) and Australia (Holubowycz
1995) indicate that alcohol-related pedestrian collisions
and deaths have not decreased to the same extent. Injured
pedestrians who have used alcohol suffer more severe
injury, with statistically significantly higher injury severity
scores (8.8 vs 4.9) and length of stays (3.9 vs. 1.9 days)

Fig. 2 Relative risk of alcohol-related pedestrian injury, New York City census tracts 2001–2010
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(Dultz et al. 2011). In 2009 in the United States, 53 % of pe-
destrians killed between 9 PM and 6 AM had blood alcohol
concentrations (BACs) at or above 0.08 % (NHTSA 2010).
Our study was motivated in part by the recommenda-

tion that “The main elements of (a strategic) approach
involved systematic methods for identifying locations
where the problem is greatest and/or more acute…”
(Corben et al. 1996). While our analyses replicate others
that have shown that areas around bars or other establish-
ments which serve alcohol are frequent hotspots for
pedestrian injury (Schuurman et al. 2009), they further
quantify that risk, place it in the commonly utilized spatial
perspective of a census tract, and demonstrate a methodo-
logical approach to surveillance of alcohol-related pedes-
trian and bicyclist injuries in urban environments.
We believe this work adds to the existing research on

pedestrian injury epidemiology in three ways. First, the
study presents alcohol-related pedestrian and bicyclist
injury risk assessment at a finer level of geographic detail
than has been generally been reported, which allows
more opportunity for focused investigations and inter-
ventions. Second, the methods in this study, which have
previously not been used for alcohol-related pedestrian
injury research, offer practical tools for spatial analysis
in injury epidemiology that might not otherwise be

readily apparent. Finally, the study extends the well-
recognized association of pedestrian injury with alcohol
intoxication by quantifying pedestrian and bicylist
injury’s association with alcohol outlets (Öström and
Eriksson 2001). Furthermore, the socioeconomic and
traffic-related control variables may themselves offer
additional insights into the complex interplay of physical
and sociocultural environment in pedestrian injury risk.
We found place, in particular the presence of alcohol

outlets in a census tract, to be a critically important
determinant of alcohol-related pedestrian and bicyclist
injury risk beyond other perhaps, more immediately ap-
parent factors such as traffic density. There were areas
in each borough of New York City where the risk of
alcohol-related pedestrian injury was higher than the city
as whole throughout the 10-year study period. The use
of exceedance probabilities refines this characterization
of risk by placing explicit probabilities on the observed
risk estimates to identify those areas for which the
increased risk was highly unlikely to be due to chance.
Injury risk at the census tract level was associated with

social, economic and traffic-related factors. Census tracts
benefited unequally from the over-all reductions, with
some areas having consistently elevated risks compared
to the city-wide experience, and others experiencing

Fig. 3 Probability of relative risk of alcohol-related pedestrian or bicyclist motor vehicle injury greater than 3, New York City census tracts 2001–2010
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sporadic years of increased risk. The kinds of small-area
spatiotemporal Bayesian hierarchical modeling ap-
proaches used in this study are increasingly a practical
option for epidemiologists interested in evaluating risk
of disease outcomes in the context of place and time.
Pedestrian injury risk decreased with increasing aver-

age vehicle speed in a census tract. There are a number
of possible explanations for this. We do not know the
speed of the vehicles that struck pedestrians, so while
the average speed was lower, the vehicles striking pedes-
trians may have been traveling at higher than average
speeds. In addition, slower speeds may indicate more
vehicles, which increases overall exposure to traffic. It
may also be that because the average vehicle speed and
traffic density variables in these analyses included high-
ways, bridges and tunnels, areas with higher average
speeds would be less likely to be frequented by pedes-
trians, decreasing exposure. A sensitivity analysis using a
version of the speed and density variables that did not
include highways, bridges and tunnels, though, returned
essentially the same results. This may also be an artifact
of measurement error due to using census tract

population as a proxy for pedestrian population. Some
tourist and retail-oriented neighborhoods, such as
Greenwich Village and SoHo, have very high pedestrian
counts and very low vehicle speeds. Finally, average
speeds are a group-level measure aggregated from individ-
ual measurements; though analysis of measures aggre-
gated from continuous variabels are less prone to bias
away from the null than aggregate from dichotomous
measures, small amounts of non-differential measurement
error at the individual level may lead to bias away from
the null at the group level if fewer measurements contrib-
ute to the aggregate measure (Mooney et al. 2014).
We believe our model represents an acceptable trade

off between goodness of fit and complexity, and that the
variables we included capture much of the potential con-
founding effects associated with areas where alcohol es-
tablishments might be typically located. As a sensitivity
analysis for this, we re-ran the model including a vari-
able for the proportion of the total area of space in a
census tract proportion of space in a census tract
accounted for by retail activity (NYC Department of City
Planning 2016; Neckerman et al. 2009). The addition of

Fig. 4 a Probability map of alcohol-related pedestrian or bicyclist injury relative risk greater than 3 in Manhattan, b Single census tract with at
least 85 % probability of relative risk greater than 3, c Zooming in on the census tract, d General built environmental characteristics of census
tract. Alcohol-related pedestrian and bicyclist injuries, New York City census tracts, 2001–2010
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this variable did not change our original results in any
meaningful way. We ran a further analysis with a meas-
ure of the health characteristics of the local retail food
environment in a census tract obtained from the Centers
for Disease Control and Prevention (CDC 2011). The re-
sults were similarly unchanged.
Ideally, external validation would include the onsite

evaluation of census tracts determined by initial analyses
to have a high probability of being at higher-than-
average risk of pedestrian injury. Site visits can yield
deep and practical insights about local risks (Hameed et
al. 2004), but are expensive, time consuming and require
complex sampling strategies. Virtual site visits using
tools like Google street view to collect and evaluate local
geographic data with less expense and difficulty have
been proposed and demonstrated. While we attempted
to illustrate the results using satellite images of a single
census tract in our study, formal validation efforts would

include statistical approaches, such as comparing predic-
tions based on the model to actual data from years be-
yond 2010, or could involve statistical associations with
external sources of covariate data. In one evaluation of
fixed local covariates, the increased frequency of pedes-
trian crashes in low income, high minority areas in Chi-
cago was shown to be associated with walkability and
access to transit options (Cottrill and Thakuriah 2010).
There are a number of important limitations in this

study. We could not determine whether alcohol contrib-
uted to the risk of injury through the pedestrian/bicyclist
or the driver. Alcohol outlets were tightly clustered in our
sample, with 22,464 licenses located within 198 census
tracts. For this reason, we chose to use a binary indicator
for the presence or absence of a licensed outlet in a census
tract, rather than the incremental effect of each additional
licensee. We restricted our analyses to only those incidents
in which law enforcement clearly determined alcohol to

Fig. 5 Google Street View images from selected Manhattan census tract with at least 85 % probability of relative risk of alcohol-related pedestrian
or bicyclist injury greater than 3
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have been a primary contributing factor. We felt this
strengthened the specificity of any result, but it is likely
that additional alcohol-related injuries occurred. Having
2000–2010 crash risks predicted by 2015 alcohol outlets
and 2010 income is not optimal. There is some evidence
that the number of alcohol outlets in New York City have
been increasing, so this will likely bias these effects toward
zero (Fickenscher 2014). Future research on the spatial dis-
tribution of alcohol-related pedestrian injury might benefit
from use of longitudinal business registration data, such as
that offered by the National Establishment Time-Series
dataset (Walls 2011).
While the Bayesian CAR model we used “draws strength”

from surrounding areas and is a way to smooth these
edge effects, future analyses could profitably include
opportunities to look at spatially-lagged impacts on
census tracts that perhaps do not have alcohol outlets
but are adjacent to those that do have alcohol outlets.
These kind of effects may evidence as patterns in drink-
ing and driving arrests. Additionally, we did not, in this
analysis, consider the different types of alcohol outlets
in a census tract. We believe this first analysis must ne-
cessarily address the universe of alcohol outlets before
parsing out effects based on subpopulations. We simi-
larly plan to conduct such analyses in the future.
Two of the statistical approaches used in this study

also come with caveats. First, exceedance probabilities,
which have been proposed as a Bayesian approach to
hotspot identification and are in relatively common use,
(Hossain and Lawson 2006; Hossain and Lawson 2010)
can be sensitive to model specifications (Lawson 2006).
And second, the proportion of variance explained by the
spatially structured conditional autoregression term is not
strictly speaking a variance partition coefficient, because
the structured and unstructured spatial terms may not be
directly comparable. It is, though, an indication of the
relative contribution of each of the spatial components.
There were 2,217 census tract in 2000, and 2,168

tracts in 2010, for an overall decrease of 2.2 %. There
were 288 census tracts in the 2000 data set that are not
in the 2010 data set. There were conversely 239 census
tracts in the 2010 data set, that were not in the 2000
data set. To ensure the consistency and reliability of the
population data across the 10 years of study, and across
the analytic approaches that took geography into ac-
count, we restricted the analyses to those census tracts
that were present in both census years. This resulted in
some raggedness to the adjacency matrix, but we felt
allowed for more valid comparisons across space and
time, and between intervention and non-intervention
sites. Finally, the boundary line between census tracts is
typically a street; in our study, any collision that fell on
such a street has been assigned to one tract or the other
based on the coordinates reported in records. We expect

that any error due to boundary effects is absorbed into
the spatial autoregressive error term and results in a bias
towards the null.
We conclude that the presence of one or more alcohol

outlets in a census tract in an urban environment in-
creases the risk of bicyclist/pedestrian injury in import-
ant and meaningful ways. This increased risk is beyond
what might be expected based on associated variables
like vehicle and pedestrian density, or socioeconomics.
Identifying areas of increased risk due to alcohol allow
the targeting of interventions to prevent and control
alcohol-related pedestrian and bicyclist injuries.
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